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Abstract

The question of how autonomous robots
could be part of our everyday life is gain-
ing increasing interest. We present here an
experiment in which an autonomous robot
explores its environment and tries to famil-
iarize itself with its novel elements using
a neural-network-based architecture. When
confronted with novelty, the lack of stabil-
ity of its learning structures increases the
arousal level of the robot, pushing it to look
for comfort from its caretaker in order to re-
duce this arousal. In this paper, we stud-
ied how the behavior of the caretaker—and
in particular the amount of comfort it pro-
vides to the robot during its exploration
of the environment—influences the course of
the robot’s exploration and learning expe-
rience. This work takes inspiration from
early mother-infant interactions and the im-
pact that the primary caretaker has on the de-
velopment of children—at least in mainstream
Western culture. The underlying hypothesis
is that the behavior of a caregiver, and partic-
ularly his/her role in modulating arousal, will
influence the development of an autonomous
robot, and that arousal regulation will also
depend on how accurately the robot signals
its internal state and how the caretaker (or
human user) responds to these signals.

1. Introduction

The question of how autonomous robots could
be part of our everyday life is gaining increas-
ing interest. Our philosophy towards the de-
sign of such robot takes an epigenetic approach
(Cañamero et al., 2006). Indeed, this approach
would help the robot discover and learn affordances
in the environment in which it is situated, including
the agents it interacts with, as opposed to an ap-
proach where the designed architectures would need

prior knowledge about the environment and / or ex-
tensive explicit instruction by the human user. The
main issue that needs to be addressed within this ap-
proach is what sort of “bootstrapping” or “built-in”
mechanism a robot would need in order to be able to
develop its cognitive and social capabilities. To be
more precise, what are the “inner drive(s)” and basic
principle(s) that will push the robot towards situa-
tions in which it will learn what it needs to know
in order to be fully operational in the given environ-
ment? This problem has many similarities with the
development of infants.

The literature in developmental psychology sug-
gests that caretaker-infant attachment bonds are
vital to the cognitive and emotional development
of infants, see e.g., (Hofer, 2006), especially dur-
ing the first years of life. Indeed, as John Bowlby
(Bowlby, 1969) discovered during his studies of
mother-infant interactions, the adult who plays the
role of primary caretaker in Western cultures, usu-
ally the mother, is utilized by the infant as a secure
base in his/her early life, particularly during stress-
ful and/or unusual episodes (Sroufe, 1995). Further-
more, as stressed in (Schore, 2001), if the primary
caretaker doesn’t act according to the infant’s de-
mands in term of interactions, the mental develop-
ment of the child can be impaired, leading to emo-
tional and cognitive disorders. Therefore, identifying
the factors that are particularly relevant during these
interactions, as well as their dynamics, is important
to understand how the development of a child can
lead to many different and uneven outcomes.

In addition to inspiration drawn from de-
velopmental psychology, our work is also
grounded in previous autonomous robots
research, particularly (Cañamero 1997,
Avila-Garcia and Cañamero, 2004) regarding affec-
tive (hormonal) modulation of behavior selection,
and especially (Blanchard and Cañamero, 2006,
Cañamero et al., 2006) regarding modeling the
caretaker in terms of perceptions that are also used



to modulate the robot’s affect and thus its behavior.
Drawing on these ideas, we have developed a robotic
architecture to explore a new environment and learn
from it using the robot’s caretaker as a “secure
base” that provides it with “comfort” to reduce the
robot’s distress.

The main questions thus addressed in the present
study are: (1) How can a caretaker help to shape
the development of an autonomous robot in terms of
cognitive, emotional and social abilities? And (2) To
what extent are psychological theories about mother-
infant attachment, and especially the role of the care-
giver as a secure base, relevant to the design of an
architecture for a developing robot?

One of the key roles that caregivers play in
the cognitive-emotional development of infants is
to contribute to the regulation of arousal, one of
the main aspects of emotional control. Arousal
regulation is crucial for the cognitive and emo-
tional development of young infants (Sroufe, 1995,
Brazelton and Nugent, 1995). In psychology, and
also in this paper, arousal typically denotes a state
of heightened physiological activity provoked by ei-
ther endogenous or exogenous factors such as cen-
tral nervous system (CNS) fluctuations or external
stimulation. This aspect has not yet been properly
investigated in developmental robotics; however, we
believe that and endowing robots with an internal
state akin to arousal that can be affected by exter-
nal stimulation could contribute to its development
by communicating this internal state to its human
user or caregiver; this would in turn allow the hu-
man caregiver to choose to intervene or not in the
robot’s own experience.

In the remainder of this paper we report on an
experiment illustrating how a caretaker can help to
modulate the arousal of an infant-like robot by inter-
acting with it and providing it with comfort. The ar-
chitecture used in this study allows the robot to dis-
cover and learn information about its environment,
and more specifically to habituate to the presence
of certain patterns of stimuli and classify them in a
stable manner. During this exploration, the arousal
of the robot is stimulated by the novelty and the
lack of variability of the patterns it senses. When
this arousal level is high, the robot looks for comfort
from the caretaker. Arousal thus modulates the be-
havior of the robot, and the caretaker modulates its
arousal.

2. Robotics Model and Experimental
Setup

2.1 Experimental Setup

In our experiments we have used an Aibo robot
placed on play mat that also contains three cylin-
drical objects of different colors, as shown in Fig. 1.

The robot uses three sensory modalities: color (the
main color in the center of its visual field projected
into the RGB color space), distance (the distance
measurements provided by three distance sensors lo-
cated in front of the robot), and contact (from one
contact sensor on the top of its head and three on its
back). Each sensor value (including the 3 RGB com-
ponents of the color of the centre of its visual field)
is discretized and projected into a vector containing
ten binary elements. To summarize, the robot has
to habituate to a vector aggregating all the elements
of the sensory space, i.e., 100 binary elements (30 for
the color, 30 for the distance sensors, 30 for the back
sensors, and 10 for the head sensor). The caretaker
can provide comfort to the robot either by appearing
in its visual field and staying in sight, or by touching
the sensors on its back. The robot recognizes the
caretaker using the color of its clothes (this is hard-
coded in this experiment, the caretaker is wearing
a black top as it is the only color absent from the
experiment room).

Figure 1: Our Experimental Setup

2.2 Robotics Architecture

Our architecture can be described in three main
steps. The robot first learns the features encoun-
tered in its exploration of the environment, and by
habituation and classification. Then the convergence
and stability of these structures are evaluated to cal-
culate the arousal level; this arousal level reflects the
degree of Surprise and Non-Mastery of the robot in
the current sensorimotor situation. Finally, an ap-
propriate action is selected and executed.

Exploring and Classifying the Environment

To explore and categorize the environment, our
architecture uses two different learning systems—
. first, a Hopfield-like associative memory neural
network to learn the patterns of stimuli encoun-
tered during the experiment, then a Kohonen Self-



Organizing map to classify the input pattern vector
of sensor values encountered during exploration.

We decided to use a Hopfield-like associative mem-
ory system to allow our robot to habituate to the
new patterns of stimuli it discovers. Another in-
teresting property of such a system is the ability
to recall learned patterns given a non-complete in-
put vector. With this property, a new input pat-
tern that is close to an already learned one, will be
learned more quickly by the robot. Since this sys-
tem learns incrementally and refines its weights to
produce an output closer to the input, we can build
a real-time measure of convergence and performance
of the system. We can therefore measure how the
system performs, e.g. the number of time steps the
system needs to learn a new pattern, and the Eu-
clidean distance between the output vector of the
associative memory and the actual input vector. We
will later use this measure to evaluate the arousal of
the robot. The associative memory model is based on
(Davey and Adams, 2004). The network proposed in
this model is a two-dimensional grid of N neurons,
with a state or output Si, locally connected to their
four nearest neighbors and randomly connected to
four other units of the network with a symmetric
connection matrix of weights wij . The connectivity
is a blend of the two configurations represented in
Fig. 2. This model is a modification of the standard
Hopfield network. The local field hi of a unit i is
given by:

hi =
N∑

i 6=j

wijSj

then the next state of the unit i is calculated as:

Si =

 1 if hi > 0
−1 if hi < 0
0 if hi = 0

In our network we use asynchronous random-order
updates. To learn the presented input pattern vec-
tor, we use a modified version of the following pro-
cedure from (Davey and Adams, 2004):

Begin with a zero-weight matrix

Repeat either until all local fields are correct or for
M time steps

Set the state of the network to one of the input pat-
terns ξ

For each unit i in turn

Calculate hiξi

If this is less than a threshold T, then change the
weights between unit i and all

other connected units j, according to:

∀j 6= i w
′

ij = wij + ξiξj

N

Here, ξ is the binary input pattern of the dis-
cretized value of the sensors. It is the input pat-
tern vector to be learned by the robot. The point
in which our algorithm differs from the original
(Davey and Adams, 2004) is the repetition until all
local fields are correct. In our experiment, the num-
ber of steps used to learn the current pattern is fixed
(10 steps in the current settings). Therefore, the
pattern is learned correctly and completely if the
robot stays in its current position, in front of the
exact sensory input pattern; if all the local fields are
correct before ten time steps, then learning stops as
described above. We use the Euclidean distance be-
tween ξ and the output of the system to compute
the measure named Surprise, which is used to eval-
uate the arousal level. Therefore a small of distance
means a

Figure 2: Associative memory network connectivity (lo-

cally connected on the left and randomly connected on

the right, from (Calcraft et al., 2007))

The second learning algorithm we use is a classi-
cal Kohonen Self-Organizing map (Kohonen, 1997).
The goal of this module is to classify the input pat-
tern vector of sensors values encountered during ex-
ploration. Although we used the classical algorithm,
we don’t have a decreasing learning rate or neighbor-
hood size over time; therefore, the map is constantly
learning but has nevertheless a satisfying stability
for already encountered patterns, and it also keeps
its plasticity. We have chosen this particular learn-
ing system also because of its property of incremental
convergence and because classification is an impor-
tant cognitive ability that our robot could use, espe-
cially to discover and associate contingencies related
to a certain sensorimotor context. We compute the
measure of the stability of the map by summing the
variations of every weights wij of the map. This
measure is used later to compute the arousal level of
the robot.

Arousal Model

To compute the arousal of the robot we use two dif-
ferent contributions. First, we evaluate the discrep-
ancy between the current pattern of stimuli and the
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Figure 3: The robot explores and classifies the environ-

ment using a Hopfield-like associative memory and a Ko-

honen Map.

output of the associative memory, a value we call
Surprise Surt, since it decreases as a function of
the familiarity of the current pattern of stimuli. In-
deed, since the associative memory has a fixed num-
ber of time steps to learn the pattern, more than one
presentation is needed. When a pattern is familiar
enough, the network converges fast and the Surprise
value is close to zero. We also use Mast, a value we
call Non-Mastery, which is the sum of the variations
of the weights of the Kohonen map. This value shows
the ability of the robot to classify the current pat-
tern and how these classes evolve. If the values of the
weights are stable, the current input pattern has al-
ready been correctly classified and the Non-Mastery
is low.

The formulas of how these values are calculated
are shown in Fig. 3. At each time step, the arousal
of the robot is computed as:

At =
{

Surt+Mast

2 if TCare = 0
A(t− 1)− α · TCare otherwise

where TCare takes the value 0.5 when the caretaker is
in sight, 0.8 when he/she touches the back sensors, 1
when both conditions are met, and 0 otherwise. Here
α is the decay rate of the instantaneous arousal when
the caretaker is interacting (set to 0.2). A(t) is then
used to evaluate a smoothed value of the arousal that
we call instantaneous arousal, as follows:

Ainst(t) = τa·Ainst(t−1)+A(t)
τa+1

This value allows us to calculate an average of this
arousal, called sustained arousal,

Asus(t) =


τsus·Asus(t−1)+Ainst(t)

τsus+1 if TCare = 0
and Ainst(t) > 0.4

0 otherwise

where τa = 30 is the time window on which the
instantaneous arousal is calculated, as an average of

Ainst(t), and τsus = 10, the time window on which
the sustained arousal is calculated, as an average of
the instantaneous arousal.
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Figure 4: Dynamics of the Arousal System.

We show in Fig. 4 how the arousal level changes
according to the degree of stimulation (Surprise and
Non-Mastery values). This stimulation is here a si-
nusoidal function oscillating between 0 and 1. On
time step 200, this stimulation is set down to 0 for
100 time steps. We can see how the arousal levels
vary. Especially, the sustained arousal, which is used
to demonstrate a high level of stimulation, decreases
slowly and takes into account the overall state of the
robot’s arousal level. In a situation where the robot
meets a high level of stimulation (new unlearned fea-
tures), a decrease of the stimulation level has to be
long enough for the robot to return to baseline, and
another small stimulation will trigger the call for the
caretaker’s intervention.

Choice of Actions

The actions that the robot takes are based on the
levels of both, instantaneous and sustained arousal.

   

Exploration
&

Classification

Arousal
System

Action
Decision
Module

Caretaker
Interaction

(in sight, touch)

Ainst , Asus 

Mast

Sur t

Tcaret

Figure 5: Entire Architecture



Ainst Asus Actions

< 0.25 − turn to explore
≥ 0.25 and ≤ 0.7 − stay still and learn

> 0.7 − bark to get attention
> 0.7 > 0.6 search for the caretaker

Table 1: Actions taken based on arousal levels

The robot can turn in only one direction, to discover
a new pattern of stimuli when the arousal is low and
the robot is in a “bored state”. If the arousal is nei-
ther low nor high the robot remains still and tries to
learn the current pattern of stimuli. If the arousal
level is high, the robot barks to attract the care-
taker’s attention, and if the arousal is high and sus-
tained, the robot looks for the caretaker by moving
is head from top to bottom and left to right, trying
to attract the caretaker in sight. Numerically speak-
ing, the actions described above are taken when the
conditions below are met:

3. Results

At every time step, we recorded the values described
in the model section, namely instantaneous arousal,
sustained arousal, caretaker interventions, associa-
tive memory error, and variations of the Kohonen
map’s weights.

We have represented the results of two typical ex-
periments in Fig. 6 with two different caretaking
styles: an active caretaker, responding almost con-
stantly to the robot’s demands (results on the right-
hand side of the figure) and always staying on the
right of the robot to appear in sight every time the
robot is looking for him/her, and a caretaker who
only interacts at the beginning and then leaves the
robot on its own intervening only a few times (once
every two minutes). Both experiments start in the
same way: when the robot is put on the play mat, it
is almost instantly asking for the caretaker, since all
the features are new and highly stimulate its arousal
(the sustained arousal level is high and oscillates
above the 0.6 threshold). Then the caretaker ap-
pears in sight and touches its back sensors to calm it
down. We can observe on the graphs that for both
caretaking styles, the Non-Mastery and Surprise val-
ues are high and sustained in the case of the non-
caring caretaker, since the “non-caring” caretaker
then backs away immediately after putting the robot
down. On the contrary, for the other type of care-
taking, the experimenter stays close during the whole
experiment. In the case of the non-intervening care-
taker, the robot is surprised and quickly stimulated
by the new environment, and the levels of arousal
(sustained and instantaneous) urge it to look for the
caretaker quickly. By doing this, the robot actually

sees the colors of the upper environment, which are
novel stimuli, and tries to learn them, and this re-
sults in an even higher increase of its arousal levels.
As for the experiment with an active caretaker, since
he interacts and provides comfort, the arousal levels
are lower and the robot can explore without.

Style M̄as σ(Mas) ¯Sur σ(Sur)

Caring 0.5987 0.0355 0.3456 0.0565
Not Caring 0.6427 0.0407 0.6455 0.0324

Table 2: Results for 10 runs for each caretaking style.(p <

5%)

To find out how the two caretaking styles differ
in terms of stability and performance of the explo-
ration and classification system, we ran our experi-
ment 10 times for each of the scenarios. The results
for the average values and standard deviations for
Non-Mastery, Surprise and Sustained arousal for the
entire experiment are presented in Table 2. These
values are used as a measurement of the quality of
the learning process, to evaluate how each caretak-
ing style affect the learning experience of the robot.
Each run lasted 50,000 time steps and started from
the exact same position. We can see that in terms of
the Kohonen Map stability (the Non-Mastery value),
the caring caretaker behavior does not outperform
the non-caring one by a large difference. However,
there is a large difference in terms of Surprise (the
associative memory’s performance) between the dif-
ferent caretaking styles. This means that by inter-
vening during surprising episodes, the human agent
has managed to decrease the time the robot spent
in front of truly new situations, allowing the robot
to skip for the time being. If these patterns were
too far from the already learned ones, it is clear that
the robot would need more time to learn them. In-
stead of having the robot stuck in front of them for
a long time, human intervention allows the robot to
try some other cases first, and return later to the dif-
ficult pattern to learn, offering a break in stimulation
that might be too sustained, and therefore stressful.
The sustained arousal gives coherent results since the
robot without the caretaker has to deal on its own
to reduce its arousal by mastering the situation and
becoming habituated to the patterns. We can only
conclude with this sample that the behavior of ei-
ther caretaker is not necessarily the “optimal” one,
and that finding the correct trade-off between staying
close and not caring requires more investigation. As
an end result, in all our runs the robot had learned
and classified all the patterns encountered; therefore,
its arousal always remained below the lower thresh-
old and caused the robot to keep turning in the arena
in a “bored state”, looking for new features to learn.
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Figure 6: Evolution of (from top to bottom): instantaneous arousal, sustained arousal, caretaker interventions, asso-

ciative memory error, and variations of the Kohonen map’s weights. The graphs on the left-hand side correspond to

an experiment with a caretaker only available at the beginning of the experiment whereas the ones on the right-hand

side correspond to an active caretaker often providing comfort to the robot.

4. Discussion and Related Work

The architecture used in our experiment allows a
robot to explore an unknown environment as a func-
tion of the dynamics of its interactions with the
caretaker and the behavior of this latter. We have
seen that even using such a simple architecture, the
outcomes of every experiment are different depend-
ing on the type of interactions. The developmen-
tal approach we have followed reproduces mother-
infant interactions. Our results show how using the
caretaker as arousal—and indirectly as behavior—
modulator is actually possible without having a com-
plex architecture. Furthermore, apart from these
two opposite caretaking styles, our architecture al-
lows to actively choose whether a situation—a pat-
tern of stimuli—has to be learned or avoided. Indeed,
if the caretaker wants the robot to really learn the
pattern, he/she can provide a small amount of com-
fort for the robot to have its instantaneous arousal in
the middle level, between the two thresholds. This
way the robot remains in its current position, with-
out looking for the caretaker or moving away. In the
opposite case, the caretaker can provide comfort to
the robot so that it continues to look for another sit-
uation, keeping the instantaneous arousal below the
lower threshold, and therefore preventing the robot
from learning a situation that the caretaker considers
irrelevant.
As for the related work, a comparable model

of arousal modulation and mother-infant in-
teraction, although, not applied to robotics,
can be found in (Smith and Stevens, 1996,
Smith and Stevens, 2002). In these contribu-
tions, the authors used a similar approach to
modulate arousal based on neurophysiological
data (Hofer and Sullivan, 2001) regarding how
endogenous opioids modulate arousal in infants.
However, their architecture did not have any cog-
nitive system related to the interactions and their
qualities, but was focused on the dynamics of the
dyadic interaction. Also related to our study is
(Likhachev and Arkin, 2000), in which the notion
of comfort and object of attachment is used by a
robot to remember its “comfort zones”. One of the
important aspects that differs in our work is that we
use a person instead of an object, and also that the
comfort of our robot is not a function of the distance
between the robot and the object of attachment.

Finally, in (Thomaz and Breazeal, 2007), an inter-
esting experiment is described showing how a human
can help a robot learn a certain task. In this contri-
bution, a robot can explore and learn on its own,
but has also the opportunity to use human guid-
ance to adapt to new tasks, changes in the envi-
ronment, and to generalize one task to similar ones.
The robot communicates its internal state with ba-
sic facial expressions and gestures. This “Socially
Guided Exploration” presents some similarities with



the work presented here; in both experiments the
interactions with a human are used to enhance the
learning process, and also in both cases the human
teacher/caretaker has to pay attention to the feed-
back from the robot in order to intervene to help and
guide the robot. However, what differs between the
two experiments is the modalities the human uses
to interact with the robot. In the experiment pre-
sented in this paper, the human caretaker orients
the robot’s behavior by touching its back sensor to
reduce its arousal level in order for the robot to move
to another sensorimotor context, or appear in sight,
whereas in the contribution discussed here, the hu-
man teacher can either point with his/her finger to a
certain region of the environment or even give verbal
instructions to the robot. We argue that the simple
non-verbal way of interacting we used in our exper-
iment is sufficient to bias the behavior and improve
the learning process of an autonomous robot.

5. Conclusion and Future Work

In the experiments described above, we have shown
how it is possible to modulate the exploratory be-
havior of an autonomous robot using notions like
Surprise and Non-Mastery to take into account its
cognitive development, and especially using a care-
taker as a secure base to provide comfort and re-
duce its arousal. We have seen that this architecture
allows a robot to base its behavior on an internal
state related to its own learning experience. Then
the human agent—the robot’s caretaker or user—can
shape the development of the robot by either letting
it cope with the current situation or, mediated by
physical or visual contact, signal to the robot that it
can discard the current situation for the time being.
This non-verbal way of biasing the experience and
exploration of the robot presents the advantages of
needing less complex sensor processing compared to
other interaction modes (e.g., speech processing and
recognition), and looking and feeling more natural,
especially if the robot is to be considered as an infant
robot.

To provide a more autonomous and adaptive so-
lution, we could integrate also material from previ-
ous work modeling the imprinting phenomenon, us-
ing a perception or a compound of them as “de-
sired perceptions” (Blanchard and Cañamero, 2005,
Hiolle et al., 2007). These perceptions could be the
voice of the caretaker and his/her face. We could
then add to our architecture the possibility for the
robot to learn how to attract the attention of the
caretaker and keep him/her close enough, as has been
done in (Hiolle and Cañamero, 2007).

We would also like to investigate different behav-
ioral profiles oscillating between exploring, learning,
and demanding the caretaker’s presence, and for this
we need to explore several configurations of the pa-

rameters we have used such as the decay rates of
arousal levels. We think that the use of even earlier
experiences of the robot could help evaluate these pa-
rameters. Using this as grounding for an early shap-
ing of the personality of the robot would help us build
a more complex robot, and assess its attachment
style using for example an Ainsworth-like Strange
Situation Test (Ainsworth, 1969, Kaplan, 2001). To
improve the autonomy of our robot’s development,
adding a curiosity drive (Oudeyer et al., 2007) would
guide the robot’s exploration towards more interest-
ing situations, acting in order to increase its “learn-
ing progress”. Another interesting possibility would
be to modify our architecture using arousal to di-
rectly modulate the cognitive abilities of the robot,
particularly learning.

Finally, on another level, accurate and consistent
metrics to qualify and even quantify the behavior of
the caretaker need to be studied to systematically
measure how a caretaker interacts and assess the ef-
fects of the different caretaking styles. This would
also open up a door to the investigation of how a
robot could develop bonds with several caretakers
and exhibit preferences for a given caretaker as a
function of the given context or situation.
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